
Jointly Learning Convolutional Representations to Compress Radiological
Images and Classify Thoracic Diseases in the Compressed Domain

(Reimplementation by Viraj Bagal)

Ekagra Ranjan1, Soumava Paul2, Siddharth Kapoor3, Aupendu Kar2, Ramanathan Sethuraman4, Debdoot Sheet2

1Indian Institute of Technology, Guwahati, India
2Indian Institute of Technology, Kharagpur, India

3National Institute of Technology, Karnataka, India
4Intel Technology India Pvt. Ltd., Bangalore, India

Abstract

Convolutional Neural Networks are widely used for
image classification in all walks of life including health-
care. But in the case of medical data, large image size
is one of the major problems. It exhibits large cost on
computation. The common way of dealing with large
image size is ’resizing’ using interpolation techniques.
However, this might lead to loss of information. To
mitigate this issue, the paper trains Autoencoder on the
dataset, and then uses the encoder to downscale the
images. Furthermore, Densenet121 is used to classify the
latent vector obtained from the encoder. It is observed
that the encoder approach outperforms the plain resizing
approach. ChestX-Ray14 dataset is used in the imple-
mentation. This is the report of an attempt to reproduce
the results of the mentioned paper [1]. Pytorch is used
for the implementation. Re-implementation code can be
obtained at: https://github.com/VirajBagal/
ChestXRay14-Reimplementation/tree/
master

1. Introduction
The advent of Convolutional Neural Networks has accel-

erated the field of computer vision. CNNs are revolutioniz-
ing all the sectors dealing with image-like data and medical
field is no exception to it. CNNs have been widely used
in the classification of diabetic retinopathy, prostate cancer;
segmentation of brain MRI scans. However, large image
size is pretty common in the medical data. This hampers
the speed of training and evaluation process and leads to
exorbitant cost on computation. One of the common tech-
niques observed is resizing image using interpolation tech-

Figure 1. Label Distribution Histogram. Data is highly imbal-
anced. ’No Finding’ is the most prevalent while Hernia is the least
prevalent.

niques. These techniques might lead to some loss of infor-
mation. This motivates to circumvent the problem without
loss of much information. This paper finds Autoencoders as
a plausible solution to the loss of information problem.

In this reimplementation, I use DenseNet121 BL5 for
baseline results. BL5 refers to BaseLine 5 since five pre-
processing steps are used during training. To improve on
that, Autoencoder, rather than interpolation techniques, is
used for forming compressed representations of large im-
ages, followed by DenseNet121 for classification. ChestX-
Ray14 dataset is the publicly available largest dataset con-
sisting of chest xrays. Chestx-ray14 dataset is used for eval-
uating this approach.

1

https://github.com/VirajBagal/ChestXRay14-Reimplementation/tree/master
https://github.com/VirajBagal/ChestXRay14-Reimplementation/tree/master
https://github.com/VirajBagal/ChestXRay14-Reimplementation/tree/master


Figure 2. Stage 3 Model

2. Methodology

2.1. Dataset

ChestX-ray14 dataset was used. It is 42 GB in size and
available on Kaggle to directly use. It has 1,12,120 chestx-
ray images in total with 14 disease labels. It is multilabel
problem, that is, each image can have more than 1 disease
label. Images are 1024x1024 in size. The dataset has 51,708
images with 1 or more diseases and 60,412 images with no
disease. The dataset is highly imbalanced as observed in
Figure 1. Official train-test split was obtained from the offi-
cial website. Training dataset has 86,524 images while the
testing dataset has 25,596 images. The training dataset is
further split into train-val patientwise randomly. Validation
dataset has 10,000 images while train dataset has 76,524
images.

2.2. Architecture

DenseNet121 was used as the classifier. The Autoen-
coder was designed such that the encoder downsamples the
input by the factor of 4 in the height and width dimensions
and the encoder then resconstructs it. The encoder has
2 convolutional layers. The first layer has 32 5x5 filters
with stride 4 followed by the exponential linear unit as the
activation function and zero padding is used to preserve the
spatial dimensions during convolution. The second layer
has 1 1x1 filter with stride 1. The encoder has 16 3x3 filters
with stride 1 and zero padding is used. It is followed by the
PixelShuffle layer with r factor 4. PixelShuffle(r) converts
the input (BS,Cxr2,H,W) to the output (BS,C,Hxr,Wxr).
This is followed by the ClippedReLU layer. The formula
for the ClippedReLU layer is

ClippedReLU = min(max(0,x),1)

2.3. Loss Function

In contrast to the BCELoss used in the paper, I used
BCEWithLogitsLoss (L1) for the classifier. The Pytorch
documentation mentions that BCEWithLogitsLoss is
numerically more stable than using plain sigmoid followed
by the BCELoss. MSELoss (L2) is used for the autoen-
codger. The total loss function for the Autoencoder-CNN
(AECNN) end-to-end training is

L = λ*L1 + (1-λ)*L2, with λ=0.9

2.4. Training

3-stage training is implemented in this paper.
Stage 1: In this stage, DenseNet121 (D121) is trained

on the dataset. The model parameters are initialized with
imagenet pretrained weights. 1024x1024 original im-
ages are first resized to 256x256, followed by Random-
Crop of 224x224. RandomHorizontalFlip, RandomRota-
tion(degrees=5) and ColorJitter(contrast=0.25) are applied
after the RandomCrop. Imagenet normalization is applied
on the images before forward pass. Torchvision transforms
are used for this augmentation. The model is trained for
20 epochs with the Adam optimizer with the initial learning
rate 1e-4 and other default hyperparameters. The learning
rate is reduced by 0.1 factor if the validation loss doesn’t
decrease for straight 5 epochs. ReduceLROnPlateau is used
to bring that into effect. Just BCEWithLogitsLoss is used in
this stage. Training was done on Colab. It took around 3.5
hours for stage 1 training.

Stage 2: In this stage, the Autoencoder is trained on ran-
dom 128x128 patches of the original dataset. This is done
just to get an headstart in the training of stage 3. Ran-
domHorizontalFlip and RandomVerticalFlip are used. No
normalization is applied on the images. Just MSELoss is
used in this stage. Same number of epochs, optimizer and

2



Labels D121 (O) D121 (R) AECNN (O) AECNN (R) FMix
Atelectasis 0.7829 0.786 0.7848 0.7844 0.7810
Cardiomegaly 0.8941 0.8811 0.8951 0.9006 0.8593
Consolidation 0.7565 0.7545 0.7584 0.7514 0.7481
Edema 0.8518 0.8583 0.8506 0.8586 0.8533
Effusion 0.8340 0.8387 0.8367 0.8354 0.8326
Emphysema 0.9271 0.9242 0.9205 0.9206 0.9229
Fibrosis 0.8340 0.8314 0.8389 0.8458 0.8283
Hernia 0.9117 0.9055 0.9178 0.9105 0.9220
Infiltration 0.7044 0.7064 0.7050 0.7027 0.7000
Mass 0.8366 0.8358 0.8390 0.8305 0.8164
Nodule 0.7771 0.7772 0.7789 0.7787 0.7671
Pleural Thickening 0.7855 0.7895 0.7847 0.7910 0.7806
Pneumonia 0.7434 0.7381 0.7459 0.7343 0.7147
Pneumothorax 0.8690 0.8750 0.8698 0.8647 0.8570
Mean 0.8220 0.8216 0.8226 0.8221 0.8131

Table 1. Labelwise ROC-AUC scores. Original (O) vs Reproduced (R)

learning rate scheduler is used in this stage as in the previ-
ous stage. Training was done on Kaggle. It took about 6
hours for stage 2 training.

Stage 3: In this stage, the Autoencoder-CNN are fine-
tuned on the dataset in the end-to-end fashion. Autoencoder
and CNN are loaded with the pretrained weights of stage 2
and stage 1 respectively. 1024x1024 images are first ran-
domly cropped to size 896x896. RandomRotation of 5 de-
grees and RandomHorizontalFlip are used before forward
pass through the decoder. The latent vector obtained from
the decoder is then normalized with imagenet norms and
forward passed through the classifier. Loss (L) as men-
tioned in the subsection 2.3 was used in this training stage.
Same number of epochs, optimizer and learning rate sched-
uler is used in this stage as in the previous stages.

2.5. Validation

Stage 1 and 2 validation is done on 256x256 and
128x128 resized images respectively, while stage 3 valida-
tion is done on 896x896 resized images. No augmentation
is used during validation.

3. Evaluation
D121 BL5 and AECNN are evaluated on the official test

set of the ChestX-ray14 dataset. The original and repro-
duced ROCAUC values are reported in the table 1. D121
corresponds to the Stage 1 training evaluation only while
AECNN refers to evaluation of stage 3 AECNN model.
Clearly, the AECNN model is performing better than the
baseline D121 model and the same is observed during the
re-implementation. However, slight deviation is observed
in the original and reproduced results. Generally, training
is carried out multiple times and then the average stats with

the deviations are reported. The slight deviation can be ac-
counted by the inherent randomness in the training.

4. Ablation Study
In this study, the augmentations in stage 1 are supplanted

by FMix [2] (Mixed Sample Data Augmentation technique)
while the model of stage 1 is retained. It is observed that
D121 FMix performed worse than D121 BL5 and AECNN.
FMix mixes two samples from the same batch using masks
sampled from the Fourier Space. Due to masks, it might
happen that the deciding features of the image get occluded
and so, the model learns slowly compared to the previous
processes. Training for more number of epochs might im-
prove its score.

5. Conclusion
I have re-implemented the mentioned paper and reported

the effects of applying FMix instead of the normal augmen-
tations reported in the original paper. The reproduced val-
ues slightly deviate from the original reported values. This
can be accounted by the randomness in the training process.
On the other hand, even if FMix performed worse than the
D121 BL5 and AECNN, training for more epochs might
ameliorate its results.

References
[1] S. K. A. K. R. S.-D. S. Ekagra Ranjan, Soumava Paul. Jointly

learning convolutional representations to compress radiolog-
ical images and classify thoracic diseases in the compressed
domain. ICVGIP, 2018.

[2] M. P. M. N. A. P.-B. J. H. Ethan Harris, Antonia Marcu. Un-
derstanding and enhancing mixed sample data augmentation.
arXiv:2002.12047, 2020.

3


