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Abstract

The usage of deep learning techniques for molecular generation has been gaining

traction for drug design. The representation of molecules in SMILES notation as a

string of characters enables the usage of state of the art models in Natural Language

Processing, such as the Transformers, for drug discovery. Inspired from Generative

Pre-Training (GPT) models, in this study, we train a Transformer-Decoder on the

next token prediction task using masked self-attention for the generation of molecules.

We show that our model has the best performance on the GuacaMol dataset and

comparable performance on the MOSES dataset in generating valid, unique and novel

molecules when benchmarked against other modern methods for molecular generation.

Furthermore, we demonstrate that the model can be trained conditionally to control

multiple properties of the generated molecules. As a potential real world application,

we show that the model can also be used to generate molecules with desired scaffolds

in addition to the desired properties, by passing these structures as conditions. Using

saliency maps, we also highlight the interpretability of the generative process of the

model. Code is available at https://github.com/VirajBagal/LigGPT
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Introduction

It has been postulated that the total number of potential drug like candidates can range

from 1023 to 1060 molecules.1 However, only about 108 molecules have been synthesized.2

This disparity between synthesized and potential molecules beckons for the use of generative

models that can model the distribution of molecules for efficient sampling.

Deep generative models have made great strides in modeling data distributions in gen-

eral data domains such as Computer Vision3,4 and Natural Language Processing (NLP).5,6

Therefore, such methods have also been adopted to model molecular distributions.7,8 Such

models learn probability distributions over a large set of molecules and therefore are able

to generate novel molecules by sampling from these distributions.7,9 Thus, such methods

are preferred over classical methods of de novo drug design that are heavily dependant on

predefined drug molecules.10 The rapid adoption of deep generative model has also led to the

development of benchmark datasets such as the Molecular Sets (MOSES)11 and GuacaMol9

datasets.

The representation of molecules in Simplified Molecular Input Line Entry System (SMILES)12

notation as a string of characters enables the usage of modern NLP deep learning models

for their computation. One such model is the Transformer architecture.5 Transformers use

self and masked attention to efficiently gain context from all previous input and output to-

kens for its predictions. Thus, it has shown the state of the art performance in language

translation tasks. Transformers consist of both encoder and decoder modules. The encoder

module gains context from all the input tokens through self attention mechanisms. The

decoder module gains context from both the encoder as well as previously generated tokens

by attention. Using this context the decoder is able to predict the next token.

The decoder module has also been previously used independently for language modeling

task and is known as the Generative Pre-Training model (GPT).13 In this work we train a

smaller version of the GPT model to predict the next token for molecular generation. We

call this model LigGPT. For this, we use a SMILES tokenizer to break SMILES strings
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into a set of relevant tokens. Since predicted tokens are a result of attention applied to all

previously generated tokens, we believe, that the model easily learns the SMILES grammar

and therefore, can focus on higher level understanding of molecular properties. To this end,

we also train our models conditionally to explicitly learn certain molecular properties.

While working with this method we provide the following contributions:

• To the best of our knowledge, this is the first work that has used the GPT architecture

for molecular generation.

• We also show that it is the preferred method when using the GuacaMol dataset.We

also show that our model performs on par with other methods when benchmarked on

the MOSES dataset.

• We conduct multiple experiments to show that our model has strong control over molec-

ular properties and is able to control the value of multiple properties simultaneously

during generation.

• We also show that the model can be trained to generate molecules containing user

specified core structures/scaffolds while controlling multiple properties.

Previous Works

The earliest deep learning architectures for molecular generation involved the usage of Recur-

rent Neural Networks (RNNs) on molecular SMILES.14,15 Such models have also previously

been trained on large corpus of molecules and then focused through the usage of reinforce-

ment learning16,17 or transfer learning14 to generate molecules of desirable properties and

activity.

Auto-encoder variants such as the Variational Auto-Encoder(VAE)18–22 and Adversarial

Auto-Encoder(AAE)23–26 have also been employed for molecular generation. These models

contain an encoder that encodes molecules to a latent vector representation and a decoder
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that maps latent vectors back to molecules. Molecules can then be generated by sampling

from these latent spaces. However, SMILES based methods often lead to a discontinuous

latent space.21 This is because similar molecules can have very different SMILES represen-

tations. To counteract this problem, SMILES strings have also been randomized as inputs

for such models.27–29 Junction Tree VAE (JT-VAE)21 is also an alternative solution which

represents molecules as graph tree structures. JT-VAE also ensures 100% validity of gener-

ated molecules by maintaining a vocabulary of molecular components that can be added at

each junction of the molecule tree.

Generative Adversarial Networks (GANs) have also gained traction for molecular de-

sign.30–34 This is mainly because of their ability to generate highly realistic content.4 GANs

are composed of generators and discriminators. These work in opposition of each other.

While the generator tries to generate realistic content, the discriminator tries to distinguish

between generated and real content. ORGAN31 was the first usage of GANs for molecu-

lar generation. RANC34 was a method that introduced reinforcement learning alongside

a GAN loss to generate molecules of desirable properties. LatentGAN30 is a more recent

method which uses latent vectors as input and outputs. These latent vectors are mapped

to molecules by the decoder of a pretrained auto-encoder. This ensures that the model can

work with latent representations and doesn’t have to worry about SMILES syntax. Most

of these methods have been benchmarked on the MOSES and GuacaMol datasets for easy

comparison.

Often, methods use Bayesian optimization,35 reinforcement learning16,34 or other opti-

mization methods36 to generate molecules of desirable properties. However, only few meth-

ods have been designed, that explicitly define the values of properties for generated molecules.

Conditional RNNs37 and Conditional Adversarially Regularized Autoencoder (CARAE)26

are two such methods that sample molecules based on exact values. RNNs have also been

previously used to generate molecules based on given scaffolds.38 However, only a graph

based method has been designed that ensures the presence of desired scaffolds while gener-
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ating molecules with exact property values.39 In this work, we show that transformers control

molecular properties and scaffolds with extremely high accuracy, leading to our conclusion

that they learn a good representation of the chemical space.

Methods

Datasets

(a) (b) (c)

(d) (e) (f)

Figure 1: Distribution of property of molecules of MOSES and GuacaMol datasets.

In this work, we used two benchmark datasets, MOSES and GuacaMol for training

and evaluation of our model. MOSES is a dataset composed of 1.9 million clean lead-like

molecules with molecular weight ranging from 250 to 350 Daltons, number of rotatable

bonds lower than 7 and and XlogP below 3.5. GuacaMol on the other hand is a subset of the

ChEMBL40 24 and contains 1.6 Million molecules. To calculate molecular properties and to

extract Bemis-Murcko scaffolds,41 we used the rdkit toolkit.42 Molecular properties in the

GuacaMol dataset are less restricted as compared to the MOSES dataset, as can be seen in
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Figure 2: Pipeline for Training and Generation using the LigGPT model.

Figure1. Therefore, we use the GuacaMol dataset to test property conditional generation.

However, MOSES also provides a test set of scaffolds which we use to evaluate scaffold and

property conditional generation.

Model Overview

The model schematic for training and generation is given in Figure 2. For training we extract

molecular properties and scaffolds from molecules using rdkit and pass them as conditions

alongside the molecular SMILES. For generation, we provide the model a set of property

and scaffold conditions along with a start token to sample a molecule.

Our model is illustrated in Figure 3. The model is essentially a mini version of the

Generative Pre-Training (GPT) model. Unlike GPT1 that has around 110M parameters,

LigGPT has only around 6M parameters. LigGPT comprises stacked decoder blocks. Each

decoder block is composed of a masked self-attention layer and feed forward layer. LigGPT

consists of 8 such decoder blocks. SMILES strings are first tokenized. Further, to keep track

of the order of the sequence, position values are assigned to each token. During conditional

training, segment tokens are provided to distinguish between the condition and the molecule

representation. All the tokens are mapped to the same space using respective Embedding

layers. All the embeddings are added and passed as input to the model.
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Figure 3: LigGPT consists of 8 Decoder blocks. Each decoder block is a stack of Masked
Self-Attention and Feed forward layer. The network is trained on next token prediction
task. For conditional training, the appropriate condition is transformed using linear layer
and concatenated to the embedding of the SMILES representation of the molecule. Segment
tokens allow the model to distinguish between the ’Condition’ and the ’SMILES sequence’.
Position tokens provide the information of the position of each SMILES token in the sequence.
The embeddings of the SMILES token, segment token and position token are added and
passed as input to the model.

GPT architectures work on a masked self-attention mechanism. Self-attention is calcu-

lated through ’Scaled Dot Product Attention’ in the same manner as.5 This involves 3 sets

of vectors, the query, key and value vectors. Query vectors are used to query the weights

of each individual value vector. They are first sent through a dot product with key vectors.

These dot products are scaled by the dimensions of these vectors and then a softmax func-

tion is applied to get the corresponding weights. The value vectors are multiplied by their

respective weights and added. The query, key and value vectors for each token are computed

by weight matrices present in each decoder block. Concretely, attention can be represented

by the following formula:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V
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Where Q, K and V are query, key and value vectors respectively. dk here is the dimension

of query and key vectors.

Self-attention provides attention to all the tokens of a sequence for prediction. However,

this is not ideal when we are training a model to predict the next token in a sequence.

Therefore, masked self attention is applied to mask attention to all sequence tokens that

occur in future time steps. This is essential as during generation, the network would have

access only to the tokens predicted in the previous time-steps. Moreover, instead of per-

forming a single masked self-attention operation, each masked self-attention block performs

multiple masked self-attention operations (multi-head attention) in parallel and concatenates

the output. Multi-head attention provides better representations by attending to different

representation subspaces at different positions.

We train this model on molecules represented as SMILES string. For this, we use a

SMILES tokenizer to break up the string into a sequence of relevant tokens. Property

conditions are also sent through a linear layer that maps the condition to a vector of 256

dimensions. The resultant vector is then concatenated at the start of the sequence of the

embeddings of the SMILES tokens. For scaffold condition, we use an embedding layer to

map the tokens to 256-dimensional vectors as well. This embedding layer is shared with the

molecule embedding layer. Similar to property condition, the scaffold representation is then

concatenated at the start of the sequence of the embeddings of the SMILES tokens. The

model is trained such that the predicted tokens are a result of attention to both the previous

tokens as well as the conditions. During generation a start token of a single carbon atom is

provided to the network along with the conditions.
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Results and Discussion

We trained and tested LigGPT on both the MOSES and GuacaMol datasets. We also

conducted experiments to check LigGPT’s capacity to control molecular properties and core

structures. Each model was trained on a NVIDIA 2080Ti GPU and took about 10 mins

per epoch. Most of the models converged and showed best performance after 10 epochs.

However, we noticed that training them for slightly fewer epochs led to similar results in

validity, novelty and uniqueness of generated molecules.

Before explaining the experimental results, we describe the metrics used to evaluate the

models:

• Validity: the fraction of generated molecules that are valid. We use rdkit for validity

check of molecules. Validity measures how well the model has learnt the SMILES

grammar and the valency of atoms.

• Uniqueness: the fraction of valid generated molecules that are unique. Low unique-

ness highlights repetitive molecule generation and low level of distribution learning by

the model.

• Novelty: the fraction of valid unique generated molecules that are not in the training

set. Low novelty is a sign of overfitting. We don’t want the model to memorize the

training data.

• Internal Diversity (IntDivp): measures the diversity of the generated molecules.

This uses the Tanimoto similarity (T ) between the fingerprints of each pair of molecules

in the generated set (S).

IntDivp(S) = 1− p

√
1

|S|2
∑

s1,s2∈S

T (s1, s2)p
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Table 1: Unconditional training on MOSES dataset. Temperature 1.6 was used.

Models Validity Unique@10K Novelty IntDiv1 IntDiv2

CharRNN 0.975 0.999 0.842 0.856 0.85
VAE 0.977 0.998 0.695 0.856 0.85
AAE 0.937 0.997 0.793 0.856 0.85

LatentGAN 0.897 0.997 0.949 0.857 0.85
JT-VAE 1.0 0.999 0.9143 0.855 0.849
LigGPT 0.9 0.999 0.941 0.871 0.865

Table 2: Unconditional training on GuacaMol dataset. Temperature 0.9 was used.

Models Validity Unique Novelty

SMILES LSTM 0.959 1.0 0.912
AAE 0.822 1.0 0.998
Organ 0.379 0.841 0.687
VAE 0.870 0.999 0.974

LigGPT 0.986 0.998 1.0

Unconditional Generation

We compare the performance of LigGPT on the MOSES dataset to that of CharRNN, VAE,

AAE, LatentGAN and JT-VAE. JT-VAE uses graphs as input while the others use SMILES.

To get the optimal model for each dataset we check the generative performance for several

sampling temperature values between 0.7 and 1.6. We notice that the model performs best

at a temperature of 1.6 for MOSES and 0.9 for GuacaMol. We report the optimal model

performance on each dataset in Table 1 and Table 2.

On the MOSES benchmark, LigGPT performs the best in terms of the two internal diver-

sity metrics. This indicates that even though LigGPT learns from the same chemical space

as other models, it is better than others at generating molecules with lower redundancy. In

case of validity, as mentioned earlier, JT-VAE always generates a valid molecule because it

checks validity at every step of generation. Barring JT-VAE, we observe that CharRNN,

VAE and AAE have high validity but low novelty. Compared to these three & JT-VAE, Lig-

GPT has lower validity but much higher novelty. We find that the performance of LigGPT

is comparable to LatentGAN. LatentGAN involves training of an autoencoder followed by

the training of GAN on the latent space of the trained autoencoder. This is a 2-step process
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Figure 4: Input saliency maps for the shown generated molecule. The dark purple underline
are the tokens under consideration for saliency maps. The intensity of color of each token
indicates the importance of that token for generating the underlined token.

while on the other hand, LigGPT is trained end-to-end. We observe that LigGPT’s validity

and uniqueness is slightly higher than LatentGAN, but LatentGAN’s novelty is greater by

0.008. On the GuacaMol benchmark, we see that LigGPT is easily the preferred method

when compared to other methods tested on it. It returns very high validity, uniqueness and

novelty scores on generation with a sampling temperature of 0.9. We believe this boost in

performance, as compared to MOSES, is due to a larger diversity in molecules in the Gua-

caMol dataset. Moreover, even though GuacaMol dataset has larger molecules as compared

to MOSES dataset, LigGPT generates molecules with very high validity. This indicates that

LigGPT handles long range dependencies very well.

Figure 4 shows input saliency maps for some of the generated tokens of the shown gen-

erated molecule. Input saliency methods assign a score to each input token that indicates

the importance of that token in generating the next token. ’(’, ’C’ and ’c’ refer to the

branching from chain, non-aromatic carbon and aromatic carbon respectively. From Figure

4, we see that when generating the ’O’ atom in the first saliency map, the model rightly

attends to the previous double bond and ’N’ atoms. Double bond satisfies the valency of
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the oxygen atom and the ’N’ atom participates in the formation of tautomer (Lactam and

Lactim) which increases the stability of the structure. When generating the ’C’ atom in the

second saliency map, the model attends to ’(’, ’)’ to check if they are balanced, and also

attends to the atoms in the non-aromatic ring. In the non-aromatic ring, it attends mostly

to the immediate neighbors - ’2’ and ’N’ atoms. When generating ’2’ token, it attends to

the immediate previous ’C’ token and the tokens in the non-aromatic ring. For the fourth

and fifth saliency map, when generating ’c’ tokens, the model rightly attends to the atoms

in the aromatic ring since that ring is still incomplete. Thus, these saliency maps provide

some insight on the interpretability of the generative process.

Table 3: Comparison of CharRNN and LigGPT on the generation of 10,000 molecules by
training only on 10% of the MOSES train split. CharRNN and LigGPT have 11.9 M and
6.3 M trainable parameters respectively.

Model Validity Unique Novelty Temperature

CharRNN 0.961 1.0 0.888 0.9
LigGPT 0.983 1.0 0.903 0.9

CharRNN 0.581 1.0 0.987 1.6
LigGPT 0.707 1.0 0.985 1.6

Further, we compare the performance of LigGPT with CharRNN in the low data regime.

Here, we train both the models only on 10% of the MOSES training set and evaluate the

metrics by generating 10,000 molecules. The results are reported in Table 3. With temper-

ature 0.9, LigGPT outperforms CharRNN on validity as well as novelty. With temperature

1.6, LigGPT has similar novelty as CharRNN but much better validity. Moreover, LigGPT

has only 50% of the trainable parameters of CharRNN. This indicates greater efficiency of

LigGPT owing to its masked self-attention.

Conditional Generation

Since GuacaMol has a larger range in property values, we test the model’s ability to control

molecular properties on it. While we use only logP, SAS,43 TPSA and QED44 for property

control, we would like to note that the model can be trained to learn any property that is
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inferred from the molecule’s 2D structure. For each condition we generate 10,000 molecules

to evaluate property control.

The explanation of the properties is given below:

• logP: the logarithm of the partition coefficient. Partition coefficient compares the

solubilities of the solute in two immiscible solvents at equilibrium. If one of the solvents

is water and the other is a non-polar solvent, then logP is a measure of hydrophobicity.

• Synthetic Accessibility score (SAS): measures the difficulty of synthesizing a com-

pound. It is a score between 1 (easy to make) and 10 (very difficult to make).

• Topological Polar Surface Area (TPSA): the surface sum over all polar atoms. It

measures the drug’s ability to permeate cell membranes. Molecules with TPSA greater

than 140 Å2 tend to be poor at permeating cell membranes.

• Quantitative Estimate of Drug-likeness (QED): method to quantify drug-likeness

by taking into account the main molecular properties. It ranges from zero (all proper-

ties unfavourable) to one (all properties favourable).

Table 4: Single property conditional training on GuacaMol dataset.Temperature 0.9 was
used.

Condition Validity Unique Novelty MAD

logP 0.992 0.975 1.0 0.217
TPSA 0.992 0.966 1.0 3.339
SAS 0.993 0.965 1.0 0.108
QED 0.995 0.973 1.0 0.049

Generated distributions of molecular properties for controlling a single property are vi-

sualized in Figure 5. The Mean Average Deviation (MAD), Validity, uniqueness and novelty

values for each property are reported in Table 4. As seen in Figure 5, the properties of gen-

erated molecules deviate only slightly from the intended values. This is further exemplified

by the low MAD scores (relative to the range of the property values) in the Table 4.
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(a) (b)

(c) (d)

Figure 5: Distribution of property of generated molecules conditioned on: (a) logP (b)
TPSA (c) SAS (d) QED . Trained on GuacaMol dataset. Temperature 0.9 used.

Table 5: Multi-property conditional training on GuacaMol dataset. Temperature 0.9 was
used.

Condition Validity Unique Novelty MAD TPSA MAD logP MAD SAS

SAS+logP 0.991 0.935 1.0 - 0.241 0.12
SAS+TPSA 0.992 0.929 1.0 3.543 - 0.133
TPSA+logP 0.989 0.942 1.0 3.528 0.227 -

TPSA+logP+SAS 0.99 0.874 1.0 3.629 0.254 0.158

Next we check the model’s capacity to control multiple properties simultaneously. For

this, we use SAS, LogP and TPSA. We evaluate the model’s ability to generate desired

distributions using two and three property controls at a time. Generated distribution of

molecule properties is visualised in Figure 6. We see well separated clusters centered at

the desired property values. As before, we also report the MAD results for each property
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(a) (b)

(c) (d)

Figure 6: Distribution of property of generated molecules conditioned on: (a) TPSA + logP
(b) SAS + logP (c) SAS + TPSA (d) TPSA + logP + SAS

combination in Table 5. The low MAD results indicate the strong control LigGPT has over

multiple properties for accurate generation.

Scaffold Conditioned Results

We evaluate the models ability to generate structures based on a certain scaffold while

maintaining the structure of the scaffold. We conduct these experiments on the MOSES

benchmark dataset as it contains a set of test scaffolds that are non overlapping with the
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Figure 7: Boxplot for the scaffold conditioned results

set of scaffolds that are present in the training set. We select a random set of 100 test

scaffolds, then generate 100 molecules for each scaffold followed by calculation of validity,

uniqueness, novelty and ’similarity ratio’. ’Similarity ratio’ is defined as the fraction of valid

generated molecules having tanimoto similarity of the scaffold of the generated molecule and

the conditioned scaffold greater than 0.8. We plot the distribution of each of the metrics in

terms of box plot with the swarm plot overlaid on it. The result is shown in Figure 7. From

the boxplot, we see that even after using high temperature of 1.6, around 75 of the scaffolds

have validity greater than 0.8. By virtue of high temperature, almost all the scaffolds have

uniqueness greater than 0.8. All the scaffolds have novelty greater than 0.8. Around 75

scaffolds have ’similarity ratio’ greater than 0.9, which suggests most of the generated valid

molecules have very similar scaffold to the scaffold used for condition.

Scaffold and Property Conditioned Results

We evaluate the models ability to generate structures containing desired scaffolds while

controlling molecular properties. We conduct these experiments on the MOSES benchmark
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Distribution of property of generated molecules conditioned on: Scaffold + (a)
logP (c) SAS (e) TPSA (g) QED . Distribution of tanimoto similarity of the scaffolds of
the generated molecules and the scaffold used for condition for (b) logP (d) SAS (f) TPSA
(h) QED. Trained on MOSES dataset. Temperature 1.6 used.
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dataset as it contains a set of test scaffolds that are non overlapping with the set of scaffolds

that are present in the training set. For our experiments we randomly chose 5 scaffolds of

different sizes from the MOSES test set. In these experiments, we define valid molecules

as those molecular graphs that satisfy chemical valencies and contain scaffolds that have a

tanimoto similarity of at least 0.8 to the desired scaffold. The validity score of all scaffold

based experiments are calculated based on this definition.

Table 6: Scaffold + Single property (logP, TPSA) conditional training on MOSES dataset.
Temperature 1.6 was used. Metric calculated only for molecules having tanimoto similarity
of the scaffold of the generated molecule and the scaffold used for condition greater than
0.8. (a) O=C(Cc1ccccc1)NCc1ccccc1 (b) c1cnc2[nH]ccc2c1 (c) c1ccc(-c2ccnnc2)cc1 (d)
c1ccc(-n2cnc3ccccc32)cc1 (e) O=C(c1cc[nH]c1)N1CCN(c2ccccc2)CC1

Cond Validity Unique Novelty MAD

(a)+logP 0.893 0.812 1.0 0.145
(b)+logP 0.712 0.975 1.0 0.151
(c)+logP 0.826 0.922 1.0 0.146
(d)+logP 0.891 0.858 1.0 0.160
(e)+logP 0.898 0.461 1.0 0.125
(a)+SAS 0.812 0.934 1.0 0.124
(b)+SAS 0.726 0.775 1.0 0.174
(c)+SAS 0.698 0.862 1.0 0.167
(d)+SAS 0.823 0.910 1.0 0.173
(e)+SAS 0.820 0.541 1.0 0.125

Cond Validity Unique Novelty MAD

(a)+TPSA 0.906 0.870 1.0 2.303
(b)+TPSA 0.692 0.961 1.0 3.239
(c)+TPSA 0.894 0.874 1.0 2.439
(d)+TPSA 0.902 0.891 1.0 3.178
(e)+TPSA 0.882 0.431 1.0 3.986
(a)+QED 0.872 0.951 1.0 0.05
(b)+QED 0.702 0.98 1.0 0.052
(c)+QED 0.849 0.947 1.0 0.045
(d)+QED 0.905 0.933 1.0 0.072
(e)+QED 0.824 0.571 1.0 0.081

Generated distributions for single property control can be seen in Figure 8. Tanimoto

similarity is calculated between the scaffold of the generated molecule and the conditional

scaffold. Distribution of these tanimoto similarity scores are also plotted in Figure 8. The

distribution plots peak at 1 for all the scaffolds and properties. Since scaffold based genera-

tion is more constraining for property control, generated distributions are not as narrow and

well separated as before. The quantitative results for single property control are reported in

Table 6. The low MAD scores still show that LigGPT deviates only slightly from intended

values despite the constraints. QED is a function that is dependant on multiple molecu-

lar properties simultaneously. Therefore, QED is greatly influenced by the structure of the

scaffold itself, making it very hard to control under such constraints. We believe this is the
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(a) Scaffold 1 (b) Scaffold 2 (c) Scaffold 1, logP

(d) Scaffold 2, logP (e) Scaffold 1, SAS (f) Scaffold 2, SAS

Figure 9: Scaffold 1: O=C(Cc1ccccc1)NCc1ccccc1. Scaffold 2: c1cnc2[nH]ccc2c1. In all the
subfigures, the molecule in black box is the scaffold used for conditional generation. (a, b)
8 random generated molecules having the same scaffold as scaffold 1 and 2 respectively. (c,
d) Conditioned on scaffold as well as logP = 2. (e, f) Conditioned on scaffold as well as
SAS = 2.75.

reason for large overlap between distributions generated for QED control. Some examples of

generated molecules for two scaffolds are given in Figure 9. In all the generated molecules,

we see that the conditioned scaffold is maintained. Subfigures also show the molecules con-

ditioned on scaffold + logP and scaffold + SAS. We see the addition of different functional

groups to the scaffold in order to get the desired property value.

Multi-property control clusters are plotted in Figure 10. Even when using multiple prop-

erties, we see the tanimoto similarity distributions peaking at 1 in Figure 11. As expected,

property-based clusters are not as well formed as before. However, there is a good separation

between the clusters for two property control. We can also see that the intended values of
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Table 7: Scaffold + Multi-property conditional training on MOSES dataset. Tempera-
ture 1.6 was used. Metric calculated only for molecules having tanimoto similarity of the
scaffold of the generated molecule and the scaffold used for condition greater than 0.8.
(a) O=C(Cc1ccccc1)NCc1ccccc1 (b) c1cnc2[nH]ccc2c1 (c) c1ccc(-c2ccnnc2)cc1 (d) c1ccc(-
n2cnc3ccccc32)cc1 (e) O=C(c1cc[nH]c1)N1CCN(c2ccccc2)CC1

Cond Validity Unique Novelty MAD TPSA MAD logP

(a)+TPSA+logP 0.812 0.737 1.0 3.667 0.249
(b)+TPSA+logP 0.693 0.931 1.0 4.117 0.199
(c)+TPSA+logP 0.830 0.852 1.0 3.903 0.152
(d)+TPSA+logP 0.773 0.818 1.0 4.617 0.204
(e)+TPSA+logP 0.776 0.511 0.999 4.046 0.242

Cond Validity Unique Novelty MAD SAS MAD logP

(a)+SAS+logP 0.727 0.818 1.0 0.146 0.255
(b)+SAS+logP 0.591 0.649 1.0 0.193 0.191
(c)+SAS+logP 0.75 0.711 1.0 0.196 0.183
(d)+SAS+logP 0.748 0.731 1.0 0.171 0.246
(e)+SAS+logP 0.847 0.439 1.0 0.153 0.203

Cond Validity Unique Novelty MAD TPSA MAD SAS

(a)+TPSA+SAS 0.751 0.901 1.0 3.947 0.192
(b)+TPSA+SAS 0.649 0.744 1.0 5.120 0.226
(c)+TPSA+SAS 0.683 0.803 1.0 4.074 0.210
(d)+TPSA+SAS 0.733 0.861 1.0 4.345 0.199
(e)+TPSA+SAS 0.838 0.482 1.0 3.827 0.162

Cond Validity Unique Novelty MAD TPSA MAD logP MAD SAS

(a)+TPSA+logP+SAS 0.618 0.681 1.0 4.935 0.551 0.311
(b)+TPSA+logP+SAS 0.653 0.649 1.0 5.325 0.238 0.262
(c)+TPSA+logP+SAS 0.582 0.620 1.0 5.318 0.292 0.242
(d)+TPSA+logP+SAS 0.530 0.646 1.0 5.559 0.531 0.309
(e)+TPSA+logP+SAS 0.754 0.388 1.0 5.729 0.403 0.241
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(a) (b)

(c) (d)

Figure 10: Distribution of property of generated molecules conditioned on: Scaffold + (a)
TPSA + logP (b) SAS + TPSA (c) SAS + logP (d) TPSA + logP + SAS. Trained on
MOSES dataset and temperature 1.6 used.

molecular properties are close to the centers of these clusters. This can further be verified

by results reported for multi-property control in Table 7. For three property control one of

the clusters (red) is not well formed due to highly constraining property values. We see that

the rest of the clusters are largely well formed and separated.
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(a) (b)

(c) (d)

Figure 11: Distribution of tanimoto similarity of the scaffolds of the generated molecules
and the scaffold used for condition for (a) TPSA + logP (b) SAS + TPSA (c) SAS + logP
(d) TPSA + logP + SAS. Trained on MOSES dataset and temperature 1.6 used.

One Shot Optimization

Due to LigGPT’s strong ability to control molecular properties, we believe it has potential

usage in real world problems such as lead optimization. We call this ”one shot optimization”

as it’s a one step process of providing the desired scaffold and properties for optimized

molecule generation. To demonstrate this, we sample 3 scaffolds from test set having QED

around 0.4. Using these scaffolds and QED 0.9 as the condition, we generate molecules

using LigGPT. Sample generated molecules are shown in figure 12. We see that the scaffold

is maintained in the generated molecules and their QED values are around 0.9.

While we show it’s usefulness only on QED, we would like to note that it could be adopted
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Figure 12: One shot optimization of QED value conditioned on the scaffold

for other molecular properties as well. Furthermore, we believe it could also be used in other

molecular design task such generation of active molecules with good docking scores for a

particular protein, provided, a dataset for the protein is available for training beforehand.

Conclusion

In this work, we designed a Transformer-Decoder model called LigGPT for molecular gen-

eration. This model utilises masked self-attention mechanisms that make it simpler to learn

long range dependencies between string tokens. This is especially useful to learn the seman-

tics of valid SMILES strings that satisfies valencies and ring closures. We see through our

benchmarking experiments that LigGPT shows very good validity scores even with sampling

temperature as high as 1.6 for the MOSES dataset and 0.9 for the GuacaMol dataset. Fur-

thermore, as shown, this also allows the model to do well in low data regimes. The high

sampling temperatures enables the model to generate large amounts of novel and unique

molecules. Therefore, LigGPT is able to show good performance on both datasets with it

outperforming all other methods benchmarked on the GuacaMol dataset.
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We also show that the model learns higher level chemical representations through molec-

ular property control. LigGPT is able to generate molecules with property values that

deviate only slightly from the exact values that are passed by the user. It’s also able to gen-

erate molecules containing user specified scaffolds while controlling these properties. It does

this with good accuracy despite the constraining conditions of scaffold based drug design.

Through this, we convey LigGPT’s real world utility for molecular generation.

Consequently, we believe that the LigGPT model should be considered a strong archi-

tecture to be used by itself or incorporated into other molecular generation techniques. The

implementation of the model is available at https://github.com/VirajBagal/LigGPT
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