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Abstract

Application of deep learning techniques for molecular gener-
ation has been gaining traction for drug design. The represen-
tation of molecules in SMILES notation as a string of char-
acters enables the usage of state of the art models in Natural
Language Processing, such as the Transformers, for molec-
ular design. Inspired from Generative Pre-Training (GPT)
models, in this study, we train a Transformer-Decoder on
the next token prediction task using masked self-attention for
the generation of molecules. We show that our model has
the best performance on the GuacaMol dataset and compa-
rable performance on the MOSES dataset in generating valid,
unique and novel molecules when benchmarked against other
modern methods for molecular generation. Furthermore, we
demonstrate that the model can be trained conditionally to
control multiple properties of the generated molecules. As a
potential real world application, the model can be used to gen-
erate molecules with desired properties thus catalysing the
drug discovery process.

Introduction and Related Work
It has been postulated that in the whole chemical space,
the total number of potential drug like candidates can range
from 1023 to 1060 molecules(Polishchuk, Madzhidov, and
Varnek 2013). However, only about 108 molecules have
been synthesized at least once(Kim et al. 2016). This dis-
parity between synthesized and potential molecules beckons
for the use of generative models that can model the distribu-
tion of molecules for efficient sampling.

Deep generative models have made great strides in mod-
eling data distributions in general data domains such as
Computer Vision(Goodfellow et al. 2014) and Natural Lan-
guage Processing (NLP)(Vaswani et al. 2017). Therefore,
such methods have also been adopted to model molecular
distributions(Chen et al. 2018).

The earliest deep learning architectures for molecular
generation involved the usage of Recurrent Neural Networks
(RNNs) on molecular SMILES(Segler et al. 2018; Gupta
et al. 2018). Such models have also previously been trained
on large corpus of molecules and then focused through
the usage of reinforcement learning(Popova, Isayev, and
Tropsha 2018; Olivecrona et al. 2017) or transfer learn-
ing(Segler et al. 2018) to generate molecules of desir-
able properties and activity. Auto-encoder variants such as

the Variational Auto-Encoder(VAE)(Liu et al. 2018; Kus-
ner, Paige, and Hernández-Lobato 2017; Simonovsky and
Komodakis 2018; Jin, Barzilay, and Jaakkola 2018; Lim
et al. 2018; Pathak et al. 2020) and Adversarial Auto-
Encoder(AAE)(Kadurin et al. 2017; Putin et al. 2018b;
Polykovskiy et al. 2018; Hong et al. 2019) have also been
employed for molecular generation. These models contain
an encoder that encodes molecules to a latent vector rep-
resentation and a decoder that maps latent vectors back
to molecules. Junction Tree VAE (JT-VAE)(Jin, Barzilay,
and Jaakkola 2018) is also a VAE model that represents
molecules as graph tree structures. JT-VAE also ensures
100% validity of generated molecules by maintaining a vo-
cabulary of molecular components that can be added at each
junction of the molecule tree.

Generative Adversarial Networks (GANs) have also been
successfully used for molecular design(Prykhodko et al.
2019; Guimaraes et al. 2017; Sanchez-Lengeling et al.
2017; De Cao and Kipf 2018; Putin et al. 2018a). OR-
GAN(Guimaraes et al. 2017) was the first usage of GANs
for molecular generation. RANC(Putin et al. 2018a) intro-
duced reinforcement learning alongside a GAN loss to gen-
erate molecules of desirable properties.

A recent development in NLP has been the Transformer
model(Vaswani et al. 2017). Transformers use self and
masked attention to efficiently gain context from all previ-
ous input and output tokens for its predictions. Thus, it has
shown the state of the art performance in language transla-
tion tasks. Transformers consist of both encoder and decoder
modules. The encoder module gains context from all the in-
put tokens through self attention mechanisms. The decoder
module gains context from both the encoder as well as pre-
viously generated tokens by attention. Using this context the
decoder is able to predict the next token.

The decoder module has also been previously used inde-
pendently for language modeling task and is known as the
Generative Pre-Training model (GPT)(Radford et al. 2018;
Brown et al. 2020; Radford et al.). In this work we train
a smaller version of the GPT model to predict the next to-
ken for molecular generation. We call this model LigGPT.
We demonstrate that the model can be trained conditionally
to control multiple properties. Therefore, we propose that
LigGPT is capable of generating molecules whose physio-
chemical properties are tuned to desired values while also



Figure 1: The network is trained on next token prediction task. For conditional training, the appropriate condition is transformed
using linear layer and concatenated to the embedding of the SMILES representation of the molecule. Segment tokens allow
the model to distinguish between the ’Condition’ and the ’SMILES sequence’. Position tokens provide the information of the
position of each SMILES token in the sequence. The embeddings of the SMILES token, segment token and position token are
added and passed as input to the model.

maintatining high uniqueness and novelty.

Method
Our model is illustrated in Figure 1. The model is essen-
tially a mini version of the Generative Pre-Training (GPT)
model. Unlike GPT1 that has around 110M parameters, Lig-
GPT has only around 6M parameters. This reduction in pa-
rameters reflects in low training time and thus a more ef-
ficient model. LigGPT comprises stacked decoder blocks,
each of which is composed of a masked self-attention layer
and feed forward layer. LigGPT consists of 8 such decoder
blocks. Masked self-attention masks tokens that occur after
the current time step. This is essential as during generation,
the network would have access only to the tokens predicted
in the previous time-steps. Moreover, instead of performing
a single masked self-attention operation, each masked self-
attention block performs multiple masked self-attention op-
erations (multi-head attention) in parallel and concatenates
the output.

We train this model on molecules represented as SMILES
string. For this, we use a SMILES tokenizer to break up the
string into a sequence of relevant tokens. Further, to keep
track of the position of each token in the sequence, posi-
tion tokens are assigned to each position. During conditional
training, segment tokens are provided to distinguish between
the condition and the molecule representation. All the tokens
are mapped to the same space using respective embedding
layers. All the embeddings are added and passed as input to
the model.

Property conditions are also sent through a linear layer
that maps the condition to a vector of 256 dimensions.
The resultant vector is then concatenated at the start of the
sequence of the embeddings of the SMILES tokens. The
model is trained such that the predicted tokens are a result
of attention to both the previous tokens as well as the con-

ditions. During generation a start token of a single carbon
atom is provided to the network along with the conditions.

Datasets
In this work, we use two benchmark datasets, MOSES
and GuacaMol for training and evaluation of our model.
MOSES is a dataset composed of 1.9 million clean lead-like
molecules with molecular weight ranging from 250 to 350
Daltons, number of rotatable bonds lower than 7 and and
XlogP below 3.5. GuacaMol on the other hand is a subset of
the ChEMBL 24(Gaulton et al. 2017) and contains 1.6 mil-
lion molecules. To calculate molecular properties, we use
the RDKiT toolkit(Landrum 2013). As shown in Figure2,
molecular property distributions in the GuacaMol dataset
have a higher range making it suitable to test property con-
ditional generation. Following are the properties considered
in the study:

• logP: the logarithm of the partition coefficient. Partition
coefficient compares the solubilities of the solute in two
immiscible solvents at equilibrium. This helps in assess-
ing the bioavailability of the drug molecule

• Synthetic Accessibility score (SAS): measures the diffi-
culty of synthesizing a compound. It is a score between 1
(easy to make) and 10 (very difficult to make).

• Topological Polar Surface Area (TPSA): the surface
sum over all polar atoms. It measures the drug’s abil-
ity to permeate cell membranes. Molecules with TPSA
greater than 140 Å2 tend to be poor at permeating cell
membranes.

Results
Before explaining the experimental results, we describe the
metrics used to evaluate the models:
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Figure 2: Distribution of properties in MOSES and GuacaMol datasets.

• Validity: the fraction of generated molecules that are
valid. We use RDKit for validity check of molecules.
Validity measures how well the model has learnt the
SMILES grammar and the valency of atoms.

• Uniqueness: the fraction of valid generated molecules
that are unique. Low uniqueness highlights mode col-
lapse.

• Novelty: the fraction of valid unique generated molecules
that are not in the training set. Low novelty is a sign of
overfitting.

• Internal Diversity (IntDivp): measures the diversity of
the generated molecules using Tanimoto similarity (T ) of
each pair of molecules in the generated set (S).

IntDivp(S) = 1− p

√
1

|S|2
∑

s1,s2∈S

T (s1, s2)p

Figure 3: Generated molecules.

Unconditional Generation
We compare the performance of LigGPT on the MOSES
dataset to that of CharRNN, VAE, AAE, Latent-
GAN(Prykhodko et al. 2019) and JT-VAE. JT-VAE
uses graphs as input while the others use SMILES. To get
the optimal model for each dataset we check the generative
performance for several sampling temperature values
between 0.7 and 1.6. We notice that the model performs best

Models Validity Unique@10K Novelty IntDiv1 IntDiv2

CharRNN 0.975 0.999 0.842 0.856 0.85
VAE 0.977 0.998 0.695 0.856 0.85
AAE 0.937 0.997 0.793 0.856 0.85

LatentGAN 0.897 0.997 0.949 0.857 0.85
JT-VAE 1.0 0.999 0.9143 0.855 0.849
LigGPT 0.9 0.999 0.941 0.871 0.865

Table 1: Unconditional training on MOSES dataset. Temper-
ature 1.6 was used.

Models Validity Unique Novelty
SMILES LSTM 0.959 1.0 0.912

AAE 0.822 1.0 0.998
ORGAN 0.379 0.841 0.687

VAE 0.870 0.999 0.974
LigGPT 0.986 0.998 1.0

Table 2: Unconditional training on GuacaMol dataset. Tem-
perature 0.9 was used.

at a temperature of 1.6 for MOSES and 0.9 for GuacaMol.
We report the optimal model performance on each dataset
in Table 1 and Table 2.

On the MOSES benchmark, LigGPT performs the best in
terms of the two internal diversity metrics. This indicates
that even though LigGPT learns from the same chemical
space as other models, it is better than others at generating
molecules with lower redundancy. In case of validity, JT-
VAE always generates a valid molecule because it checks
validity at every step of generation. Barring JT-VAE, we ob-
serve that CharRNN, VAE and AAE have high validity but
low novelty. Compared to these three & JT-VAE, LigGPT
has lower validity but much higher novelty. We find that the
performance of LigGPT is comparable to LatentGAN. La-
tentGAN involves training of an autoencoder followed by
the training of GAN on the latent space of the trained au-
toencoder. This is a 2-step process while on the other hand,
LigGPT is trained end-to-end. We observe that LigGPT’s
validity, uniqueness and novelty is similar to LatentGAN’s.
On the GuacaMol benchmark, we see that LigGPT is easily
the most preferred method when compared to other meth-
ods(Guimaraes et al. 2017; Brown et al. 2019) tested on it. It
returns very high validity, uniqueness and novelty scores on
generation with a temperature of 0.9. We believe this boost



(a) (b) (c)

Figure 4: Distribution of properties of generated molecules conditioned on the particular properties. The unit of TPSA is Å2.

Condition Validity Uniqueness Novelty MAD TPSA MAD logP MAD SAS
TPSA 0.992 0.966 1.0 3.339 - -

TPSA+logP 0.989 0.942 1.0 3.528 0.227 -
TPSA+logP+SAS 0.99 0.874 1.0 3.629 0.254 0.158

Table 3: Multi-property conditional training on GuacaMol dataset. Temperature 0.9 was used.

in performance, as compared to MOSES, is due to a larger
diversity in molecules in the GuacaMol dataset. Moreover,
even though GuacaMol dataset has larger molecules as com-
pared to MOSES dataset, LigGPT generates molecules with
very high validity. This indicates that LigGPT handles long
range dependencies very well.

Property Conditional Generation
Since GuacaMol has a larger range in property values, we
test the model’s ability to control molecular properties on it.
While we use only logP, SAS(Ertl and Schuffenhauer 2009)
and TPSA for property control, the model can be trained to
learn any molecular property. For each condition we gener-
ate 10,000 molecules to evaluate property control.

Distribution of TPSA from the generated molecules for
single property control are visualized in Figure 4(a). As seen
in the figure, generated values deviate only slightly from the
intended values. Next, for multi-property control we check
the model’s capacity to control two (Figure 4(b)) and three
properties (Figure 4(c)) at a time. We see well separated
clusters centered at the desired property value indicating
high accuracy. The average values of validity, uniqueness,
novelty and Mean Absolute Difference (MAD) scores for
each condition are reported in Table 3. The model’s accu-
racy is further exemplified by the low MAD scores despite
having to control multiple properties at a time.

Conclusion
In this work, we designed a Transformer-Decoder model
called LigGPT for molecular generation. This model
utilises masked self-attention mechanism that make it

simpler to learn long range dependencies between string
tokens. This is especially useful to generate valid SMILES
strings that satisfy chemical valencies. We see through
our benchmarking experiments that LigGPT shows very
high validity, uniqueness and novelty scores compared to
the state of the art methods. LigGPT is able to show good
performance on the MOSES and GuacaMol datasets with
it outperforming all other methods benchmarked on the
GuacaMol dataset. We also show that the model learns
higher level chemical representations through molecular
property control. LigGPT is able to generate molecules
with property values that deviate only slightly from the
exact values that are passed by the user for both single
and multi-property control. Consequently, we believe that
the LigGPT model may evolve to be a strong architecture
to be used by itself or incorporated into other molecular
generation techniques.
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